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wtphm

The Wind Turbine Prognostics and Health Management library processes wind turbine events (also called alarms or
status) data, as well as operational SCADA data (the usually 10-minute data coming off of wind turbines) for easier
fault detection, prognostics or reliability research.

Turbine alarms often appear in high numbers during fault events, and significant effort can be involved in processing
these alarms in order to find what actually happened, what the root cause was, and when the turbine came back online.
This module solves this by automatically identifying stoppages and fault periods in the data and assigning a high-level
“stoppage category” to each. It also provides functionality to use this info to label SCADA data for training predictive
maintenance algorithms.

Although there are commercial packages that can perform this task, this library aims to be an open-source alternative
for use by the research community.

Please reference this repo if used in any research. Any bugs, questions or feature requests can be raised on GitHub.
Can also reach me on twitter @leahykev.

This library was used to build the “batch creation” and “data labelling” steps of this paper.
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CHAPTER 1

Installation

Install using pip!

pip install wtphm

1.1 Overview

The three main parts of the package are the wtphm.batch, and wtphm.pred_processing modules, as well as
the wtphm.clustering subpackage.

wtphm.batch contains the functions for creating the batches of turbine alarms and assigning a high-level reason for
the stoppage, gleaned from the events and scada data. More information on this can be found in1.

wtphm.pred_processing contains functions for labelling SCADA data based on the batches, for purposes of
fault detection or prognosis.

wtphm.clustering deals with clustering together different similar alarm sequences, explored in2. This part of the
library isn’t updated as much as the others - development may be needed in some parts.

Information and critiques on some of the issues surrounding the data coming from wind turbines more generally can
be found in3.

1.2 Input Data Needed for Batch Creation

Batches are groups of turbine events generated by the alarm system which appear during a stoppage. The data to be
used for creating the batches and assigning a high level cause for the stop must have certain features, described here.

1 Leahy, K., Gallagher, C., O’Donovan, P., Bruton, K. & O’Sullivan, D. T. (2018), ‘A Robust Prescriptive Framework and Performance Metric
for Diagnosing and Predicting Wind Turbine Faults based on SCADA and Alarms Data with Case Study’, Energies 11(7), pp. 1–21.

2 Leahy, K., Gallagher, C., O’Donovan, P., & O’Sullivan, D. T. J. (2019), ‘Issues with Data Quality for Wind Turbine Condition Monitoring and
Reliability Analyses’, Energies, 12(2):201; https://doi.org/10.3390/en12020201

3 Leahy, K., Gallagher, C., O’Donovan, P. & O’Sullivan, D. T. (2018), ‘Cluster analysis of wind turbine alarms for characterising and classifying
stoppages’, IET Renewable Power Generation 12(10), 1146–1154.
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1.2.1 Events Data

The event_data is related to any fault or information messages generated by the turbine. This is instantaneous, and
records information like faults that have occurred, or status messages like low- or no- wind, or turbine shutting down
due to storm winds.

The data must have the following column headers and information available:

• turbine_num: The turbine the data applies to

• code: There are a set list of events which can occur on the turbine. Each one of these has an event code

• description: Each event code also has an associated description

• time_on: The start time of the event

• stop_cat: This is a category for events which cause the turbine to come to a stop. It could be the functional
location of where in the turbine the event originated (e.g. pitch system), a category for grid-related events, that
the turbine is down for testing or maintenance, in curtailment due to shadow flicker, etc.

• In addition, there must be a specific event code which signifies return to normal operation after any downtime
or abnormal operating period.

1.2.2 SCADA Data

The scada_data is typically recorded in 10-minute intervals and has attributes like average power output, maxi-
mum, minimum and average windspeeds, etc. over the previous 10-minute period.

For the purposes of this library, it must have the following column headers and data:

• turbine_num: The turbine the data applies to

• time: The 10-minute period the data belongs to

• availability counters: Some of the functions for giving the batches a stop category rely on availability counters.
These are sometimes stored as part of scada data, and sometimes in separate availability data. They count the
portion of time the turbine was in some mode of operation in each 10-minute period, for availability calculations.
For example, maintenance time, fault time, etc. In order to be used in this library, the availability counters are
assumed to range between 0 and n in each period, where n is some arbitrary maximum (typically 600, for the
600 seconds in the 10-minute period).

1.2.3 Sample Data

There is sample data provided in the examples folder of the github repository. This is 2 months’ of real data for 2
turbines, but has been fully anonymised. For the event_data, all codes have been mapped to a random set of
numbers, and descriptions have been removed. For the scada_data, all values have been normalised between 0 and
1, with the exception of the availability counters (“lot”, “rt”, etc.) and features counting the number and duration of
alarms in the past 48 hours, “num_48h” and “dur_48h”).

The data can be imported like so:

>>> import wtphm
>>> import pandas as pd
>>> event_data = pd.read_csv('examples/event_data.csv',
... parse_dates=['time_on', 'time_off'])
>>> event_data.duration = pd.to_timedelta(event_data.duration)
>>> scada_data = pd.read_csv('examples/scada_data.csv',
... parse_dates=['time'])

4 Chapter 1. Installation
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>>> event_data.head()
turbine_num code time_on time_off duration stop_

→˓cat description
0 22 9 2015-11-01 00:03:56 2015-11-01 00:23:56 0 days 00:20:00
→˓ok description anonymised
1 21 93 2015-11-01 00:09:54 2015-11-01 00:10:56 0 days 00:01:02
→˓ok description anonymised
2 21 97 2015-11-01 00:10:56 2015-11-01 00:37:39 0 days 00:26:43
→˓ok description anonymised
3 22 165 2015-11-01 00:16:39 2015-11-06 05:03:35 5 days 04:46:56
→˓ok description anonymised
4 22 93 2015-11-01 00:23:56 2015-11-01 00:24:58 0 days 00:01:02
→˓ok description anonymised

>>> scada_data.head()
time turbine_num wind_speed kw wind_speed_sd wind_speed_

→˓max ... lot wot est mt rt eect
0 2015-11-01 00:00:00 22 0.148473 0.009655 0.064693 0.
→˓110283 ... 0.0 0.0 0.0 0.0 0.0 0.0
1 2015-11-01 00:10:00 22 0.125081 0.004962 0.066886 0.
→˓084016 ... 0.0 0.0 0.0 0.0 0.0 0.0
2 2015-11-01 00:20:00 22 0.121183 0.004913 0.060307 0.
→˓086624 ... 0.0 0.0 0.0 0.0 0.0 0.0
3 2015-11-01 00:30:00 22 0.137752 0.004454 0.067982 0.
→˓104322 ... 0.0 0.0 0.0 0.0 0.0 0.0
4 2015-11-01 00:40:00 22 0.171540 0.040889 0.066886 0.
→˓113077 ... 0.0 0.0 0.0 0.0 0.0 0.0
[5 rows x 22 columns]

1.3 Group Faults of the Same Type

Sometimes it is useful to treat similar types of fault together as the same type of fault. An example would be faults
across different pitch motors on different turbine blades being grouped as the same type of fault. This is useful, as
there are typically very few fault samples on wind turbines, so treating these as three separate types of faults would
give even fewer samples for each class.

The wtphm.batch.get_grouped_event_data() function does this. For the pitch fault example above, the
grouping would give the events “pitch thyristor 1 fault” with code 501, “pitch thyristor 2 fault” with code 502 and
“pitch thyristor 3 fault” with code 503 all the same event description and code, i.e. they all become “pitch thyristor
1/2/3 fault (original codes 501/502/503)” with code 501. Note that this is an entirely optional step before creating the
batches of events.

>>> # codes that cause the turbine to come to a stop
... stop_codes = event_data[
... (event_data.stop_cat.isin(['maintenance', 'test', 'sensor', 'grid'])) |
... (event_data.stop_cat.str.contains('fault'))].code.unique()
>>> # each of these lists represents a set of pitch-related events, where
... # each memeber of the set represents the same event but along a
... # different blade axis
... pitch_code_groups = [[300, 301, 302], [400, 401], [500, 501, 502],
... [600, 601], [700, 701, 702]]
>>> event_data[event_data.code.isin(
... [i for s in pitch_code_groups for i in s])].head()

turbine_num code time_on time_off duration stop_cat
→˓ description

(continues on next page)
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112 22 502 2015-11-01 21:04:26 2015-11-01 21:04:36 00:00:10 fault_pt
→˓description anonymised pitch axis 3
114 22 601 2015-11-01 21:04:28 2015-11-01 21:04:36 00:00:08 fault_pt
→˓description anonymised pitch axis 2
119 22 601 2015-11-01 21:04:36 2015-11-01 21:04:36 00:00:00 fault_pt
→˓description anonymised pitch axis 2
131 22 600 2015-11-01 21:04:36 2015-11-01 21:04:36 00:00:00 fault_pt
→˓description anonymised pitch axis 1
132 22 600 2015-11-01 21:04:36 2015-11-01 21:04:36 00:00:00 fault_pt
→˓description anonymised pitch axis 1

As can be seen, the events data has a number of different codes for data along different pitch axes.

Below, we group these together as the same code (note the descriptions have been anonymised):

>>> event_data, stop_codes = wtphm.batch.get_grouped_event_data(
... event_data=event_data, code_groups=pitch_code_groups,
... fault_codes=stop_codes)
>>> # viewing the now-grouped events from above:
... event_data.loc[[112, 114, 119, 131, 132]]

turbine_num code time_on time_off duration stop_cat
→˓ description
112 22 500 2015-11-01 21:04:26 2015-11-01 21:04:36 00:00:10 fault_pt
→˓description anonymised pitch axis 1/2/3 (original codes 500/501/502)
114 22 600 2015-11-01 21:04:28 2015-11-01 21:04:36 00:00:08 fault_pt
→˓ description anonymised pitch axis 1/2 (original codes 600/601)
119 22 600 2015-11-01 21:04:36 2015-11-01 21:04:36 00:00:00 fault_pt
→˓ description anonymised pitch axis 1/2 (original codes 600/601)
131 22 600 2015-11-01 21:04:36 2015-11-01 21:04:36 00:00:00 fault_pt
→˓ description anonymised pitch axis 1/2 (original codes 600/601)
132 22 600 2015-11-01 21:04:36 2015-11-01 21:04:36 00:00:00 fault_pt
→˓ description anonymised pitch axis 1/2 (original codes 600/601)

1.4 Creating Batches

As mentioned in4, turbine alarms often occur in “showers” which can overwhelm operators and make it difficult to
pinpoint the root cause of a stoppage. wtphm.batch.get_batch_data() creates the batches. The algorithm is
as follows, as described in detail in1:

• A list of event codes which causes the turbine to stop, fault_codes, are passed to the function, as well as
the code which signifies the turbine returning to normal operation after downtime, ok_code.

• The earliest event in the event_datawhich matches a code in fault_codes is gotten. Every event between
then and the next earliest ok_code event are stored as a batch.

• The next earliest event in event_data which matches a code in fault_codes is gotten. Every event
between then and the next earliest ok_code event are stored as a batch, etc.

>>> # create the batches
... batch_data = wtphm.batch.get_batch_data(
... event_data=event_data, fault_codes=stop_codes, ok_code=207,
... t_sep_lim='1 hours')

(continues on next page)

4 Qiu, Y., Feng, Y., Tavner, P., Richardson, P., Erdos, G. & Chen, B. (2012), ‘Wind turbine SCADA alarm analysis for improving reliability’,
Wind Energy 15(8), 951–966.
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>>> batch_data.loc[15:20]
turbine_num fault_root_codes all_root_codes start_time ... fault_

→˓dur down_dur fault_event_ids all_event_ids
15 22 (68, 113, 500) (68, 113, 500) 2015-12-03 12:1... ...
→˓00:03:20 00:07:25 Int64Index([29... Int64Index([29...
16 22 (144, 500) (144, 500) 2015-12-08 16:3... ...
→˓00:11:50 00:15:55 Int64Index([32... Int64Index([32...
17 22 (73,) (73, 141) 2015-12-10 18:1... ...
→˓00:00:00 00:00:17 Int64Index([33... Int64Index([33...
18 22 (77, 85, 164) (77, 85, 164) 2015-12-11 10:0... ...
→˓03:03:14 03:07:25 Int64Index([34... Int64Index([34...
19 22 (77, 85, 164) (77, 85, 164) 2015-12-14 12:3... ...
→˓09:52:49 09:52:51 Int64Index([36... Int64Index([36...
20 22 (68, 113, 144,... (68, 113, 144,... 2015-12-16 10:0... ...
→˓01:09:01 01:09:02 Int64Index([38... Int64Index([38...
[6 rows x 10 columns]

Note that if two stoppages occur in quick succession, i.e. one batch ends and another quickly begins, the t_sep_lim
argument in wtphm.batch.get_batch_data() allows us to treat both as the same continuous batch. For more
information about the various columns and parameters, see the wtphm.batch.get_batch_data() documenta-
tion.

Below, we view one of the batches and the event behind it in a bit more detail:

>>> batch_data.loc[20]
turbine_num 22
fault_root_codes (68, 113, 144, 500)
all_root_codes (68, 113, 144, 500)
start_time 2015-12-16 10:00:05
fault_end_time 2015-12-16 11:09:06
down_end_time 2015-12-16 11:09:07
fault_dur 0 days 01:09:01
down_dur 0 days 01:09:02
fault_event_ids Int64Index([3868, 386...
all_event_ids Int64Index([3868, 386...
Name: 20, dtype: object
>>> event_data.loc[batch_data.loc[20, 'all_event_ids']].head()

turbine_num code time_on time_off duration stop_cat
→˓ description
3868 22 144 2015-12-16 10:00:05 2015-12-16 10:00:13 00:00:08 fault_pt
→˓ description anonymised
3867 22 68 2015-12-16 10:00:05 2015-12-16 10:00:13 00:00:08 fault_pt
→˓ description anonymised
3866 22 500 2015-12-16 10:00:05 2015-12-16 10:00:13 00:00:08 fault_pt
→˓description anonymised pitch axis 1/2/3 (original codes 500/501/502)
3865 22 113 2015-12-16 10:00:05 2015-12-16 10:00:13 00:00:08 fault_pt
→˓ description anonymised
3869 22 300 2015-12-16 10:00:10 2015-12-16 10:00:13 00:00:03 fault_pt
→˓description anonymised pitch axis 1/2/3 (original codes 300/301/302)

We can also see the corresponding SCADA data. Note that the down-time counter, ‘dt’, which count the number of
seconds in each 10-minute period the turbine was down, is active after the start time of the batch, and goes back to
zero after it reactivates.

>>> start = batch_data.loc[20, 'start_time'] - pd.Timedelta('20 minutes')
>>> end = batch_data.loc[20, 'down_end_time'] + pd.Timedelta('20 minutes')

(continues on next page)
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>>> t = batch_data.loc[20, 'turbine_num']
>>> scada_data.loc[
... (scada_data.time >= start) & (scada_data.time <= end) &
... (scada_data.turbine_num == t),
... ['time', 'turbine_num', 'wind_speed', 'kw', 'ot', 'sot', 'dt']]

time turbine_num wind_speed kw ot sot dt
6425 2015-12-16 09:50:00 22 0.245289 0.298111 600.0 600.0 0.0
6426 2015-12-16 10:00:00 22 0.281027 0.454494 600.0 600.0 0.0
6427 2015-12-16 10:10:00 22 0.263158 0.016645 11.0 6.0 594.0
6428 2015-12-16 10:20:00 22 0.226446 0.005421 0.0 0.0 600.0
6429 2015-12-16 10:30:00 22 0.217674 0.004993 0.0 0.0 600.0
6430 2015-12-16 10:40:00 22 0.195257 0.004906 0.0 0.0 600.0
6431 2015-12-16 10:50:00 22 0.179337 0.005240 0.0 0.0 600.0
6432 2015-12-16 11:00:00 22 0.234243 0.004948 0.0 0.0 600.0
6433 2015-12-16 11:10:00 22 0.246589 0.005344 0.0 53.0 547.0
6434 2015-12-16 11:20:00 22 0.258285 0.285964 355.0 600.0 0.0

1.5 Assigning High-Level Root Causes to Stoppages

Once the batches have been obtained, the event_data and scada_data can be used to assign a “stop category” to
the batch. Here the “stop category” refers to a functional location on the turbine using some pre-determined taxonomy,
or that the turbine was down due to grid issues, testing, maintenance, etc.

This library provides a family of functions that use two main sources of information to get the stop categories: the
“root” events of a batch, and the SCADA data availability counters.

1.5.1 Using the root events

The root events refer to the event(s) that occur at the start of the batch, and are stored as fault_root_codes in the
event_data. Since these are the events that initially cause the turbine to stop, the stop_cat of these events are
used to assign a stop_cat to the batch, i.e. the entire stoppage, as a whole.

To get the root_cats, use the wtphm.batch.get_root_cats() function:

>>> root_cats = wtphm.batch.get_root_cats(batch_data, event_data)
>>> root_cats.loc[15:20]
15 (fault_pt, fault_pt, fault_pt)
16 (fault_pt, fault_pt)
17 (sensor,)
18 (grid, grid, fault_pt)
19 (grid, grid, fault_pt)
20 (fault_pt, fault_pt, fault_pt, fault_pt)

The names of the categories in root_cats come from the stop_cat of the events from which they are made.
Here, “fault_pt” refers to a pitch fault.

From here, we can assign a category to a batch if every member of the root_cats is the same, for example
“fault_pt”:

>>> all_pt_ids = wtphm.batch.get_cat_all_ids(root_cats, 'fault_pt')
>>> batch_data.loc[all_pt_ids, 'batch_cat'] = 'fault_pt'
>>> # note the entries compared to above
... batch_data.loc[15:20, 'batch_cat']

(continues on next page)
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15 fault_pt
16 fault_pt
17 NaN
18 NaN
19 NaN
20 fault_pt
Name: batch_cat, dtype: object

Or, assign a category if just a single stop_cat appears in the root_cats. This is useful for if, e.g., we know that
an appearance of a grid fault anywhere in the root_cats is indicative of a grid fault having taken place:

>>> grid_ids = wtphm.batch.get_cat_present_ids(root_cats, 'grid')
>>> batch_data.loc[grid_ids, 'batch_cat'] = 'grid'
>>> batch_data.loc[15:20, 'batch_cat']
15 fault_pt
16 fault_pt
17 NaN
18 grid
19 grid
20 fault_pt
Name: batch_cat, dtype: object

The most common root_cat in a batch can also be used to label:

>>> root_cats.loc[[5, 57, 62]]
5 (grid, grid, fault_pt)
57 (grid, fault_pt)
62 (fault_pt, fault_pt)
Name: fault_root_codes, dtype: object
>>> most_common_cats = wtphm.batch.get_most_common_cats(root_cats)
>>> most_common_cats.loc[[5, 57, 62]]
5 grid
57 grid, fault_pt
62 fault_pt
Name: fault_root_codes, dtype: object

Note that entries with a tied “most common” category will be labelled as both.

1.5.2 Using the Availability Counters

In 10-minute SCADA data there are often counters for when the turbine was in various different states, for calculating
contractual availability. In a lot of cases, these count the number of seconds in each 10-minute period the turbine was
in a certain availability state.

Below, we mark batches as “maintenance” any time the maintenance counter in the corresponding 10-minute SCADA
data was active for more than 60 seconds over the duration of the batch. The counter here is represented by the ‘mt’
column of the SCADA data.

>>> maint_ids = wtphm.batch.get_counter_active_ids(
... batch_data=batch_data, scada_data=scada_data, counter_col='mt',
... counter_val=60)
>>> batch_data.loc[
... maint_ids,
... ['turbine_num', 'fault_root_codes', 'start_time', 'down_end_time']]

turbine_num fault_root_codes start_time down_end_time
55 21 (16,) 2015-12-10 21:59:33 2015-12-11 13:44:37

1.5. Assigning High-Level Root Causes to Stoppages 9
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1.5.3 Combining the Labelling Methods

In1, a combination of the above is described to label the stoppages. This combination is available in wtphm.batch.
get_batch_stop_cats(). From the documentation for that function:

Labels the batches with an assumed stop category, based on the stop categories of the root event(s) which
triggered them, i.e. the one or more events occurring simultaneously which caused the turbine to stop
(items lower down supersede those higher up):

• If all root events in the batch are “normal” events, then the batch is labelled normal

• Otherwise, label as the most common stop cat in the initial events

• If a single sensor category event is present, label sensor

• If a single grid category event is present, label grid. Also label grid if the grid counter was active in
the scada data. This is a timer indicating how long the turbine was down due to grid issues, used for
calculating contract availability

• If the maintenance counter was active in the scada data, label maint

• There is an additional column labelled “repair”. If the repair counter was active, the turbine was
brought down for repairs, and this is given the value “TRUE” for these times

>>> batch_data = wtphm.batches.get_batch_stop_cats(
... batch_data, event_data, scada_data, grid_col='lot', maint_col='mt',
... rep_col='rt')
>>> batch_data.batch_cat
0 fault_pt
1 fault_pt
2 test
3 fault_pt
4 fault_pt
Name: batch_cat, Length: 71, dtype: object

1.6 Analysing Stoppages

Getting the batch data allows for more complex analysis. Below, the total duration of every stop category in the batches
is plotted:

>>> durations = batch_data.groupby(
... 'batch_cat').down_dur.sum().reset_index().sort_values(by='down_dur')
>>> durations.down_dur = durations.down_dur.apply(
... lambda x: x / np.timedelta64(1, 'h'))
>>> sns.set(font_scale=1.2)
>>> sns.set_style('white')
>>> fig, ax = plt.subplots(figsize=(4, 3))
>>> g = sns.barplot(data=durations, x='batch_cat', y='down_dur', ax=ax,
... color=sns.color_palette()[0])
>>> g.set_xticklabels(g.get_xticklabels(), rotation=40)
>>> ax.set(xlabel='Stop Category', ylabel='Total Downtime (hrs)')
>>> ax.yaxis.grid()

10 Chapter 1. Installation
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1.7 Labelling the SCADA data

Once the stoppages have been identified, the data can be labelled for prognosis or other analysis. This is achieved in
the wtphm.pred_processing module.

The wtpum.pred_processing.label_stoppages() function provides a number of ways of labelling the
scada_data. For example, suppose we want to label the some specific stoppages in the SCADA data:

>>> fault_batches = batch_data.loc[[20, 21]]
>>> fault_batches[
... ['turbine_num', 'fault_root_codes', 'start_time', 'down_end_time',
... 'down_dur', 'repair']]

turbine_num fault_root_codes start_time down_end_time down_dur
→˓ repair
20 22 (68, 113, 144, 500) 2015-12-16 10:00:05 2015-12-16 11:09:07 01:09:02
→˓ False
21 22 (144, 500) 2015-12-16 15:03:28 2015-12-16 15:25:42 00:22:14
→˓ False
>>>
>>> scada_l = wtphm.pred_processing.label_stoppages(
... scada_data, fault_batches, drop_fault_batches=False,
... label_pre_stop=False)
>>> start = fault_batches.start_time.min() - pd.Timedelta('30T')
>>> end = fault_batches.down_end_time.max() + pd.Timedelta('30T')
>>> s_cols = ['time', 'turbine_num', 'stoppage', 'pre_stop', 'batch_id']
>>> scada_l.loc[(scada_l.time >= start) & (scada_l.time <= end) &
... (scada_l.turbine_num == 22), s_cols]

time turbine_num stoppage batch_id
6424 2015-12-16 09:40:00 22 0 -1

(continues on next page)
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(continued from previous page)

6425 2015-12-16 09:50:00 22 0 -1
6426 2015-12-16 10:00:00 22 0 -1
6427 2015-12-16 10:10:00 22 1 20
6428 2015-12-16 10:20:00 22 1 20
6429 2015-12-16 10:30:00 22 1 20
6430 2015-12-16 10:40:00 22 1 20
6431 2015-12-16 10:50:00 22 1 20
6432 2015-12-16 11:00:00 22 1 20
6433 2015-12-16 11:10:00 22 1 20
6434 2015-12-16 11:20:00 22 0 -1
6435 2015-12-16 11:30:00 22 0 -1
6436 2015-12-16 11:40:00 22 0 -1
6437 2015-12-16 11:50:00 22 0 -1
... ... ... ... ...
6455 2015-12-16 14:50:00 22 0 -1
6456 2015-12-16 15:00:00 22 0 -1
6457 2015-12-16 15:10:00 22 1 21
6458 2015-12-16 15:20:00 22 1 21
6459 2015-12-16 15:30:00 22 1 21
6460 2015-12-16 15:40:00 22 0 -1
6461 2015-12-16 15:50:00 22 0 -1

In addition, the times leading up to the stoppages can be labelled in the scada data, and the times during the stoppages
themselves removed. This is useful for identifying “pre-stop” periods. Here, the times between 30 minutes before and
10 minutes before a fault are labelled as “pre-stop” periods.

>>> scada_l = wtphm.pred_processing.label_stoppages(
... scada_data, fault_batches, drop_fault_batches=True,
... label_pre_stop=True, pre_stop_lims=['30 minutes', '10 minutes'])
>>> start = fault_batches.start_time.min() - pd.Timedelta('60T')
>>> s_cols = ['time', 'turbine_num', 'stoppage', 'pre_stop', 'batch_id']
>>> scada_l.loc[(scada_l.time >= start) & (scada_l.time <= end) &
... (scada_l.turbine_num == 22), s_cols]

time turbine_num stoppage pre_stop batch_id
6421 2015-12-16 09:10:00 22 0 0 -1
6422 2015-12-16 09:20:00 22 0 0 -1
6423 2015-12-16 09:30:00 22 0 0 -1
6424 2015-12-16 09:40:00 22 0 1 20
6425 2015-12-16 09:50:00 22 0 1 20
6426 2015-12-16 10:00:00 22 0 0 20
6434 2015-12-16 11:20:00 22 0 0 -1
... ... ... ... ... ...
6452 2015-12-16 14:20:00 22 0 0 -1
6453 2015-12-16 14:30:00 22 0 0 -1
6454 2015-12-16 14:40:00 22 0 1 21
6455 2015-12-16 14:50:00 22 0 1 21
6456 2015-12-16 15:00:00 22 0 0 21
6460 2015-12-16 15:40:00 22 0 0 -1
6461 2015-12-16 15:50:00 22 0 0 -1

Note that the times of the actual faults have been dropped from the data. This function can also drop additional batches
from the SCADA data, so that, e.g. only times leading up to a specific type of fault are included, whereas all other
stoppages are removed from the data. This is useful for building or simulating normal behaviour models.

The wtphm.pred_processing also has a function wtphm.pred_processing.
get_lagged_features(). This is useful for classification, and allows features from time 𝑡 − 𝑇 to be
incorporated at time 𝑡.
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1.8 References

1.9 wtphm.batch

This module contains functions for creating the batch_data.

See more in the Overview.

wtphm.batch.get_grouped_event_data(event_data, code_groups, fault_codes)
Groups together similar event codes as the same code.

This returns the events dataframe but with some fault events which have different but similar codes and descrip-
tions grouped together and relabelled to have the same code and description.

More info in the Group Faults of the Same Type section of the user guide.

Parameters

• event_data (pandas.DataFrame) – The original events/fault data.

• fault_codes (numpy.ndarray) – All event codes that will be treated as fault events for the
batches

• code_groups (list-like, optional, default=None) – The groups of similar events with similar
codes/descriptions. Must be a list or list-of-lists, e.g. [[10, 11, 12], [24, 25],
[56, 57, 58]] or [10, 11, 12].

Returns

• grouped_event_data (pandas.DataFrame) – The event_data, but with codes and de-
scriptions from code_groups changed so that similar ones are identical

• grouped_fault_codes (pandas.DataFrame) – The fault_codes, but with the similar
codes in each group treated as identical

wtphm.batch.get_batch_data(event_data, fault_codes, ok_code, t_sep_lim=’12 hour’)
Get the distinct batches of events as they appear in the event_data.

Each batch is a group of fault events that occurred during a fault-related shutdown. A batch always begins with
a fault event from one of the codes in fault_codes, and ends with the code ok_code, which signifies the
turbine returning to normal operation.

More info in can be found in Creating Batches.

Parameters

• event_data (pandas.DataFrame) – The original events/fault data.

• fault_codes (numpy.ndarray) – All event codes that will be treated as fault events for the
batches

• ok_code (int) – A code which signifies the turbine returning to normal operation after being
shut down or curtailed due to a fault or otherwise

• t_sep_lim (str, default=’1 hour’, must be compatible with pd.Timedelta) – If a batch
ends, and a second batch begins less than t_sep_lim afterwards, then the two batches are
treated as one. It treats the the turbine coming back online and immediately faulting again
as one continuous batch. This effect is stacked so that if a third fault event happens less than
t_sep_lim after the second, all three are treated as the same continuous batch.

Returns

batch_data (pd.DataFrame) – DataFrame with the following headings:
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• turbine_num: turbine number of the batch

• fault_root_codes: the fault codes present at the first timestamp in the batch

• all_root_codes: all event start codes present at the first timestamp in the batch

• start_time: start of first event in the batch

• fault_end_time: time_on of the last fault event in the batch

• down_end_time: the time_on of the last event in the batch, i.e. the last ok_code
event in the batch

• fault_dur: duration from start of first fault event to start of final fault event in the batch

• down_dur: duration of total downtime in the batch, i.e. from start of first fault event to
start of last ok_code event

• fault_event_ids: indices in the events data of faults that occurred

• all_event_ids: indices in the events data of all events (fault or otherwise) that occurred
during the batch

wtphm.batch.get_batch_stop_cats(batch_data, event_data, scada_data, grid_col, maint_col,
rep_col, grid_cval=0, maint_cval=0, rep_cval=0)

Labels the batches with an assumed stop category, based on the stop categories of the root event(s) which
triggered them, i.e. the one or more events occurring simultaneously which caused the turbine to stop (items
lower down supersede those higher up):

• If all root events in the batch are “normal” events, then the batch is labelled normal

• Otherwise, label as the most common stop cat in the initial events

• If a single sensor category event is present, label sensor

• If a single grid category event is present, label grid. Also label grid if the grid counter was active in the
scada data. This is a timer indicating how long the turbine was down due to grid issues, used for calculating
contract availability

• If the maintenance counter was active in the scada data, label maint

• There is an additional column labelled “repair”. If the repair counter was active, the turbine was brought
down for repairs, and this is given the value “TRUE” for these times.

Parameters

• batch_data (pd.Dataframe) – The batch data

• event_data (pd.Dataframe) – The events data

• scada_data (pd.Dataframe) – The scada data.

• grid_col, maint_col, rep_col (string) – The columns of scada_datawhich contain avail-
abililty counters for grid issues, turbine maintenance and repairs, resepctively

• grid_cval, maint_cval (int) – The minimum total sum of the grid, maintenance and repair
counters throughout the duration of a batch for it to be marked as grid, repair or maintenance

Returns

batch_data_sc (pd.DataFrame) – The original batch_data DataFrame, but with the follow-
ing headings added:

• batch_cat: The stop categories of each batch

• repairs: The repair status of each batch

14 Chapter 1. Installation



wtphm

wtphm.batch.get_root_cats(batch_data, event_data)
Gets the categories for the root alarms in the batch_data

Parameters

• batch_data (pd.Dataframe) – The batch data

• event_data (pd.Dataframe) – The events data

Returns root_cats (pd.Series) – Series of tuples, where each tuple contains strings of the
stop_cats for each of the root alarms in a batch

wtphm.batch.get_most_common_cats(root_cats)
Gets the most common root fault category from a dictionary of root alarms

Parameters root_cats (pd.Series) – Series of tuples, where each tuple contains strings of the
stop_cats for each of the root alarms in a batch

Returns most_common_cats (pd.Series) – Each entry in the series is a string containing the most
commonly occurring root fault in cat_counts. In the case of a draw, then both are added,
e.g. ‘test, grid’

wtphm.batch.get_cat_all_ids(root_cats, cat)
Get an index of batches where there is only a single certain category present in the categories of the root alarms.

Parameters

• root_cats (pd.Series) – Series of strings, where each string is the categories of each of the
root alarms in a batch, separated by commas.

• cat (string) – The category to check the presence of

Returns cat_present_idx (pd.Index) – The index of batch entries where cat was the only category
present in the root_cats

wtphm.batch.get_cat_present_ids(root_cats, cat)
Get an index of batches where a certain category is present in the categories of the root alarms.

Parameters

• root_cats (pd.Series) – Series of strings, where each string is the categories of each of the
root alarms in a batch, separated by commas.

• cat (string) – The category to check the presence of

Returns cat_present_idx (pd.Index) – The index of batch entries where cat was present in the
root_cats

wtphm.batch.get_counter_active_ids(batch_data, scada_data, counter_col, counter_value=0)
Get an index of batches during which a certain scada counter was active

In 10-minute SCADA data there are often counters for when the turbine was in various different states, for calcu-
lating contractual availability. This function finds the named counter_col in scada_data, and identifies
any sample periods where this value was above counter_value.

If any of these sample periods fall within a certain batch, then this function returns those batch ids.

Parameters

• batch_data (pd.DataFrame) – The batches of events

• scada_data (pd.DataFrame) – The 10-minute SCADA data

• counter_col (string) – The column in the SCADA data with a counter
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• counter_value (int) – Any SCADA entries with a counter above this value will have their
index returned

Returns counter_active_index (pd.Index) – The id’s of counter_col columns in scada_data
which have a val above counter_value.

1.10 wtphm.pred_processing

This module contains functions for processing scada data ahead of using it for fault detection or prognostics. Read
more in the Labelling the SCADA data section of the User Guide.

wtphm.pred_processing.label_stoppages(scada_data, fault_batches, drop_fault_batches=True,
label_pre_stop=True, pre_stop_lims=[’90 minutes’,
0], oth_batches_to_drop=None, drop_type=None)

Label times in the scada data which occurred during a stoppage and leading up to a stoppage as such.

This adds a column to the passed scada_data, “stoppage”, and an optional column “pre_stop”. “stoppage”
is given a 1 if the scada point in question occurs during a stoppage, and “pre_stop” is given a 1 in the samples
leading up to the stoppage. Both are 0 otherwise. These vary under different circumstances (see below). It also
adds a “batch_id” column. For entries with a “pre_stop” or “stoppage” column of 1, “batch_id” corresponds to
the batch giving it that label.

Parameters

• scada_data (pandas.DataFrame) – Full set of SCADA data for the turbine.

• fault_batches (pandas.DataFrame) – The dataframe of batches of fault events, a subset of
the output of :func:wtphm.batch.get_batch_data‘

• drop_fault_batches (bool, default=True) – Whether to drop the scada entries which cor-
respond to the stoppage periods covered by fault_batches. i.e. not the pre-fault data,
but the fault data itself. This is highly recommended, as otherwise the stoppages themselves
will be kept in the returned data, though the “stoppage” column for these entries will be
labelled as “1”, while the fault-free data will be labelled “0”.

• label_pre_stop (bool; default=True) – If True, add a column to the returned
scada_data_l for “pre_stop”. Samples in the time leading up to a stoppage are given
label 1, and 0 otherwise.

• pre_stop_lims (2*1 list of pd.Timedelta-compatible strings, default=[‘90 mins’, 0])
– The amount of time before a stoppage to label scada as “pre_stop”. E.g., by default,
“pre_stop” is labelled as 1 in the time between 90 mins and 0 mins before the stoppage
occurs. If [‘120 mins’, ‘20 mins’] is passed, scada samples from 120 minutes before until
20 minutes before the stoppage are given the “pre_stop” label 1.

• oth_batches_to_drop (pd.DataFrame, optional; default=None) – Additional batches, inde-
pendent of dropping the fault_batches if drop_fault_batches is passed, which
should be dropped from the scada data. If this is passed, drop_typemust be given a string
as well.

• drop_type (str, optional; default=None) – Only used when oth_batches_to_drop
has been passed. If ‘both’, the stoppage and pre-stop entries (according to pre_stop_lims)
corresponding to batches in oth_batches_to_drop are dropped from the scada data. If
‘stop’, only the stoppage entries are dropped If ‘pre’, opnly the pre-stop entries are dropped

Returns scada_data_l (pd.DataFrame) – The original scada_data dataframe with the “pre_stop”,
“stoppage” and “batch_id” columns added.
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wtphm.pred_processing.get_lagged_features(X, y, features_to_lag_inds, steps)
Returns an array with certain columns as lagged features for classification

Parameters

• X (m*n np.ndarray) – The input features, with m samples and n features

• y (m*1 np.ndarray) – The m target values

• features_to_lag_inds (np.array) – The indices of the columns in X which will be lagged

• steps (int) – The number of lagging steps. This means for feature ‘B’ at time T, features will
be added to X at T for B@(T-1), B@(T-2). . . B@(T-steps).

Returns

• X_lagged (np.ndarray) – An array with the original features and lagged features appended.
The number of samples will necessarily be decreased because there will be some samples at
the start with NA values for features.

• y_lagged (np.ndarray) – An updated array of target vaues corresponding to the new number
of samples in X_lagged

1.11 wtphm.clustering

1.11.1 wtphm.clustering.batch_clustering

This module is for dealing with clustering certain similar batches of turbine events together.

It contains functions for extracting clustering-related features from the batches, as well as functions for silhouette plots
for evauating them.

This code was used in the following paper:

Leahy, Kevin, et al. “Cluster analysis of wind turbine alarms for characterising and classifying stoppages.” IET
Renewable Power Generation 12.10 (2018): 1146-1154.

wtphm.clustering.batch_clustering.get_batch_features(event_data, fault_codes,
batch_data, method,
lo=1, hi=10, num=1,
event_type=’fault_events’)

Extract features from batches of events which appear during stoppages, to be used for clustering.

Only features from batches that comply with certain constraints are included. These constraints are chosen
depending on which feature extraction method is used. Details of the feature extraction methods can be found
in [1].

Note: For each “batch” of alarms, there are up to num_codes unique alarm codes. Each alarm has an associ-
ated start time, time_on.

Parameters

• event_data (pandas.DataFrame) – The original events/fault data. May be grouped (see
:func:wtphm.batch_clustering.get_grouped_events_data‘).

• fault_codes (numpy.ndarray) – All event codes that will be treated as fault events for the
batches

• batch_data (pandas.DataFrame) – The dataframe holding the indices in event_data
and start and end times for each batch

• method (string) – One of ‘basic’, ‘t_on’, ‘time’.
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basic:

– Only considers batches with between lo and hi individual alarms.

– Array of zeros is filled with num corresponding to order of alarms’ appearance.

– Does not take into account whether alarms occurred simultaneously.

– Resultant vector of length num_codes * hi

t_on:

– Only consider batches with between lo and hi individual time_ons.

– For each time_on in each batch, an array of zeros is filled with ones in places corre-
sponding to an alarm that has fired at that time.

– Results in a pattern array of length num_codes * hi which shows the sequential
order of the alarms which have been fired.

time:

– Same as above, but extra features are added showing the amount of time between each
time_on

• lo (integer, default=1) – For method='basic', only batches with a minimum of
lo alarms will be included in the returned feature set. for method='t_on' or
method='time', it’s the minimum number of time_ons.

• hi (integer, default=10) – For method='basic', only batches with a maximum of
hi alarms will be included in the returned feature set. for method='t_on' or
method='time', it’s the maximum number of time_ons.

• num (integer, float, default=1) – The number to be placed in the feature vector to indicate
the presence of a particular alarm

• event_type (string, default=’fault_events’) – The members of batch_data to include for
building the feature set. Should normally be ‘fault_events’ or ‘all_events’

Returns

• feature_array (numpy.ndarray) – An array of feature arrays corresponding to each batch
that has has met the hi and lo criteria

• assoc_batch (unmpy.ndarray) – An array of 2-length index arrays. It is the same length as
feature_array, and each entry points to the corresponding feature_array’s index
in batch_data, which in turn contains the index of the feature_array’s associated
events in the original events_data or fault_data.

References

[1] Leahy, Kevin, et al. “Cluster analysis of wind turbine alarms for characterising and classifying stoppages.”
IET Renewable Power Generation 12.10 (2018): 1146-1154.

wtphm.clustering.batch_clustering.sil_1_cluster(X, cluster_labels, axis_label=True,
save=False, save_name=None,
x_label=’Silhouette coefficient values’,
avg_pos=0.02, w=2.3, h=2.4)

Show the silhouette scores for clusterer, print the plot, and optionally save it

Parameters

• X (np.array or list-like) – Features (possibly feature_array - need to check!)
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• cluster_labels (list of strings) – the labels of each cluster

• axis_label (Boolean, default=True) – Whether or not to label the cluster plot with each
cluster’s number

• save (Boolean, default=False) – Whether or not to save the resulting silhouette plot

• save_name (String) – The saved filename

• x_label (String) – The x axis label for the plot

• avg_pos (float) – Where to position the text for the average silghouette score relative to the
position of the “average” line

• w (float or int) – width of plot

• h (float or int) – height of plot

Returns fig (matplotlib figure object) – The silhouette analysis

wtphm.clustering.batch_clustering.sil_n_clusters(X, range_n_clusters, clust)
Compare silhouette scores across different numbers of clusters for AgglomerativeClustering, KMeans or similar

Parameters

• X (np.array or list-like) – Features (possibly feature_array - need to check!)

• range_n_clusters (list-like) – The range of clusters you want, e.g. [2,3,4,5,10,20]

• clust (sklearn clusterer) – the sklearn clusterer to use, e.g. KMeans

Returns

• cluster_labels (numpy.ndarray) – The labels for the clusters, with each one corresponding
to a feature vector in X.

• Also prints the silhouette analysis

wtphm.clustering.batch_clustering.cluster_times(batch_data, clus-
ter_labels, assoc_batch,
event_dur_type=’down_dur’)

Returns a DataFrame with a summary of the size and durations of batch members

Parameters

• batch_data (pandas.DataFrame) – The dataframe holding the indices in event_data
and start and end times for each batch

• cluster_labels (numpy.ndarray) – The labels for the clusters, with each one corresponding
to a feature vector in assoc_batch

• assoc_batch (nunmpy.ndarray) – Indices of batches associated with each
feature_array. Obtained from :func:.get_batch_features

• event_dur_type (string) – The event group duration in batch_data to return, i.e. ei-
ther ‘fault_dur’ or ‘down_dur’. ‘down_dur’ means the entire time the turbine was of-
fline, ‘fault_dur’ just means while the turbine was faulting. See :func:wtphm.batch.
Batches.get_batch_data for details

Returns summary (Pandas.DataFrame) – The DataFrame has the total duration, mean duration,
standard deviation of the duration and number of stoppages in each cluster.
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1.11.2 wtphm.clustering.event_probs

This module is for working with events data from wind turbines. It looks at all eventes generated and sees if there are
some events which trigger others. Event A triggers Event B if: t_s_A <= t_s_B and t_e_A >= t_s_B

So we can find the probability that any given A event (known as a parent event) has triggered any B events, and the
probability that any given B event (known as a child event) has been triggered by any A events.

wtphm.clustering.event_probs.get_trig_summary(events, codes, tsa_op1=’ge’,
tsa_op2=’le’, t_hi=0.9, t_lo=0.1)

Gets probabilities that pairs of events will trigger one another, and the derived relationship between these pairs

This function takes a list of event codes. It finds all combinations of pairs of codes from this and splits them into
“A” and “B” codes. It then counts the number of events with code A which have triggered one or more events
with code B and vice-versa. It then computes a probability that if an A event occurs, it will trigger a B event,
and vice-versa. From there, it deduces the relationship between pairs of events, as derived from [1].

Event A is triggered by Event B if:

T_s_A >= T_s_B & T_s_A <= T_e_B

where T_s_A, T_s_B and T_e_B are the start time of events A and B, and the end time of event B, respectively.

Parameters

• events (pandas.DataFrame) – The events data from a wind turbine. Must be free of NA
values.

• codes (list-like) – The event codes to look at

• tsa_op1 (String, default ‘ge’) – Operator to use for T_s_A >= T_s_B or T_s_A > T_s_B.
Can be one of:

‘ge’: <= ‘gt’: <

• tsa_op2 (String (default ‘le’)) – Operator to use for T_s_A <= T_e_B or T_s_A < T_e_B.
Can be one of: ‘le’: >= ‘lt’: >

• t_hi (float (default 0.9)) – Threshold of % of A events which trigger B events at or above
which relationship 3 is True (or % B triggering A for relationship 4, or % of both for rela-
tionship 1). See ‘relationship’ in the returned trig_summary dataframe below.

• t_low (float (default 0.1)) – Threshold of % of A events which trigger B events (or
vice-versa) at or below which relationship 2 is True. See ‘relationship’ in the returned
trig_summary dataframe below.

Returns

trig_summary (Pandas.DataFrame) – A matrix consisting of the following:

• A_code: the event code of the “A” events

• A_desc: description of the “A” events

• B_code: the event code of the “B” events

• B_desc: description of the “B” events

• A_count: number of “A” events in the data

• A_trig_B_count: number of “A” events which trigger one or more “B” events

• A_trig_B_prob: ratio of “A” events which have triggered one or more “B” events, to the
total number of “A” events

• B_count: Number of “B” events in the data
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• B_trig_A_count: number of “B” events which trigger one or more “A” events

• B_trig_A_prob: ratio of “B” events which have triggered one or more “A” events, to the
total number of “B” events

• relationship: Number 1-5 indicating the relationship events A have to events B:

1. High proportion of As trigger Bs & high proportion of Bs trigger As. Alarm A & B
usually appear together; A ~= B

2. Low proportion of As trigger Bs & low proportion of Bs trigger As. A & B never or rarely
appear together; A n B ~= 0

3. High proportion of As trigger Bs & less than high proportion of Bs trigger As. B will
usually be triggered whenever alarm A appears - B is a more general alarm; A e B

4. High proportion of Bs trigger As & less than high proportion of As trigger Bs. A will
usually be triggered whenever alarm B appears - A is a more general alarm; B e A

5. None of the above. The two alarms are randomly or somewhat related; A n B != 0

References

[1] Qiu et al. (2012). Wind turbine SCADA alarm analysis for improving reliability. Wind Energy, 15(8),
951–966. http://doi.org/10.1002/we.513

wtphm.clustering.event_probs.short_summary(trig_summary, codes, t=0.7)
Returns an even more summarised version of trig_summary, showing important relationships

Parameters

• trig_summary (Pandas.DataFrame) – Must be the trig_summary obtained from
get_trig_summary()

• codes (int, list) – A single, or list of, event code(s) of interest, i.e. the events that trigger
other events

• t (float) – The threshold for a ‘significant’ relationship. E.g., if t=0.7, only events that trigger
other events with a probability >= 0.7 will be displayed.

Returns

• df (Pandas.DataFrame)

• A dataframe consisting of the following –

– parent_code: the triggering events code

– child_code: the triggered events code

– trig_prob: the probability that parent_code events will trigger child_code events

– trig_count: the count of parent_code events which have triggered child_code events

wtphm.clustering.event_probs.get_trig_summary_verbose(events, codes, tsa_op1=’ge’,
tsa_op2=’le’)

Gets probabilities that certain events will trigger others, and that certain events will be triggered by others. Can
be calculated via a duration-based method, or straightforward count.

This takes a list of event codes. It creates two separate sets of “parent” and “child” events, with all the parent
events having the same event code and all the child events having another event code (though it does not neces-
sarily have to be different). It then iterates through every parent event instance to see if it has triggered one or
more child events. It counts the number of parent events which have triggered one or more child events for each
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event code. It also gives a probability that any new parent event will trigger a child event by finding the ratio of
parent events which have triggered a child event to those which haven’t.

Event A is triggered by Event B if:

T_s_A >= T_s_B & T_s_A <= T_e_B

where T_s_A, T_s_B and T_e_B are the start time of events A and B, and the end time of event B, respectively.

Parameters

• events (Pandas.DataFrame) – The events data from a wind turbine. Must be free of NA
values.

• codes (list-like) – The event codes to look at

• tsa_op1 (String (default ‘ge’)) – Operator to use for T_s_A >= T_s_B or T_s_A > T_s_B.
Can be one of: ‘ge’: <= ‘gt’: <

• tsa_op2 (String (default ‘le’)) – Operator to use for T_s_A <= T_e_B or T_s_A < T_e_B.
Can be one of: ‘le’: >= ‘lt’: >

Returns

trig_summary (Pandas.DataFrame) – A matrix consisting of the following:

• parent_event: the event code of the parent event

• parent_desc: description of the parent event

• p_count: total number of parent events matching the event code

• p_dur: total duration of parent events matching the event code

• p_trig_count: number of parent events which have triggered child events

• p_trig_dur: duration of parent events which have triggered child events

• child_event: the event code of the child event

• child_desc: description of the child event

• c_count: total number of child events matching the event code

• c_dur: total duration of child events matching the event code

• c_trig_count: number of child events which have been triggered by parent events

• c_trig_dur: duration of child events which have been triggered by parent events
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Github Page

Can be found at https://github.com/lkev/wtphm.
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Indices and tables

• genindex

• modindex
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